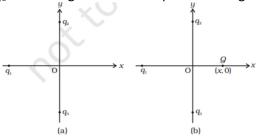
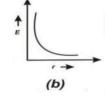
MPVMGG Physics HHW 2025-26


1. In an experiment three microscopic latex sphere are sprayed into a chamber and became charged with charges +3e,+5e and -3e respectively. All the three spheres came in contact simultaneously for a moment and got separated. Which one of following are possible values for the final charge on the spheres?

- (a)+5e,-4e,+5e
- (b)+6e,+6e,-7e
- (c) -4e,+3e,+5e
- (d)+5e,-8e,+7e

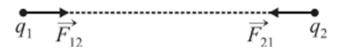
<u>2.</u> Identify the wrong statement in the following, Coulomb's law correctly describes the electric force that

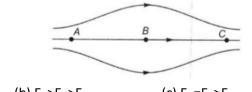
- a) binds the electrons of an atom to its nucleus
- b) binds the protons & neutrons in the nucleus of an atom
- c) binds atoms together to form molecules
- d) binds atoms & molecules to form solids


<u>3.</u> In Fig., two positive charges q2 and q3 fixed along the y axis, exert a net electric force in the + x direction on a charge q_1 fixed along the x axis. If a positive charge Q is added at (x, 0), the force on q_1

- (a) shall increase along the positive x-axis.
- (b) shall decrease along the positive x-axis.
- (c) shall point along the negative x-axis.
- (d) shall increase but the direction changes because of the intersection of Q with q2 and q3.

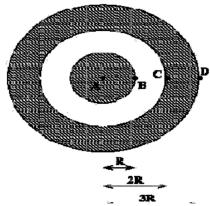
<u>4.</u> . For a point charge, the graph between electric field versus distance is given by:

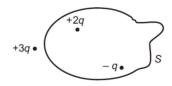




- **5.** Two point charges placed in a medium of dielectric constant 5 are at a distance r between them, experience an electrostatic force 'F'. The electrostatic force between them in vacuum at the same distance r will be-
 - (a) 5F
- (b) F
- (c) F/2
- (d) F/5
- 6. According to Coulomb's law, which is the correct relation for the following figure?

- (a) $q_1 q_2 > 0$
- (b) $q_1 q_2 < 0$
- (c) $q_1 q_2 = 0$
- (d) $1 > q_1/q_2 > 0$


7. The figure below shows the electric field lines due to two positive charges. The magnitudes EA, E_B and E_C of the electric fields at point A, B and C respectively are related a


- $(a)E_A>E_B>E_C$
- (b) $E_B > E_A > E_C$
- (d) $E_A > E_B = E_C$
- 8. An electric dipole consisting of charges + q and q separated by a distance L is in stable equilibrium in a uniform electric field E. The electrostatic potential energy of the dipole is:
 - (a) qLE

D.

- (b) zero (c) qLE
- (d) 2Qel
- 9. A solid spherical conductor has charge +Q and radius R. It is surrounded by a solid spherical shell with charge -Q, inner radius 2R, and outer radius 3R. Which of the following statements is true?

- (a) The electric potential has a maximum magnitude at C and the electric field has a maximum magnitude at A
- (b) The electric potential has a maximum magnitude at D and the electric field has a maximum magnitude at B.
- (c) The electric potential at A is zero and the electric field has a maximum magnitude at
- (d). Both the electric potential and electric field achieve a maximum magnitude at B.
- **10.** When 10^{19} electrons are removed from a neutral metal plate, the electric charge on it is c) 10⁺¹⁹ C d) 10⁻¹⁹ C a) -1.6 C b) +1.6C
- 11. Figure shows three point charges, +2q, -q and +3q. Two charges +2q and -q are enclosed within a surface 'S'. What is the electric flux due to this configuration through the surface 'S'?

- **12.**There are two identical metallic spheres A and B. A is given a charge + Q. Both spheres are then brought in contact and then separated.
 - (i) Will there be any charge on B?
 - (ii) What will the magnitude of charge on B, if it gets charged when in contact with A.
- **13.** How many electrons exist in a −1C charge? What is the total mass of these electrons?
 - (a) Explain the meaning of the statements 'electric charge of a body is quantized'.
 - **(b)** Why can one ignore quantization of electric charge when dealing with macroscopic i.e., large scale charges?
- **14.**When a glass rod is rubbed with a silk cloth, charges appear on both. A similar phenomenon is observed with many other pairs of bodies. Explain how this observation is consistent with the law of conservation of charge.
- 15. (a) Explain the meaning of the statement 'electric charge of a body is quantised'.
 - (b) Why can one ignore quantisation of electric charge when dealing with macroscopic i.e., large scale charges?
- **16**. A charged object has $q = 4.8 \times 10^{-16}$ C. How many units of fundamental charge are there on the object? (Take $e = 1.6 \times 10^{-19}$ C).
- **17.** Two insulated charged copper spheres A and B if identical size have charges q_A and q_B respectively. A third sphere C of the same size but uncharged is brought in contact with the first and then in contact with the second and finally removed from both. What are the new charges on A and B?
- 18. If distance between two equal point charges is double and their individual charges are also doubled, what would happen to the force between them?
- 19. The electrostatic force between two charges is a central force . Why?
- 20. How is the coulomb force between two charge affected by the presence of third charge ?
- 21. Force between two point charge kept at a distant d apart in air is F . If these charges are kept at the same distance in water, how does the the electric force between then change ?
- **22.** The dielectric constant of water is 80. What is its permittivity?
- **23.** Two large, thin metal plates are parallel and close to each other. On their inner faces, the plates have surface charge densities of opposite signs and of magnitude 17.0×10^{-22} C/m². What is **E**: (a) in the outer region of the first plate, (b) in the outer region of the second plate, and (c) between the plates?
- **24.** An oil drop of 12 excess electrons is held stationary under a constant electric field of $2.55 \times 10^4 \, \text{NC}^{-1}$ in Millikan's oil drop experiment. The density of the oil is 1.26 g cm⁻³. Estimate the radius of the drop. (g=9.81 m s⁻²; e=1.60 × 10⁻¹⁹C).

- **25.** In a certain region of space, electric field is along the z-direction throughout. The magnitude of electric field is, however, not constant but increases uniformly along the positive z-direction, at the rate of 10^5 NC⁻¹ per metre. What are the force and torque experienced by a system having a total dipole moment equal to 10^{-7} Cm in the negative z-direction
- **26.** A hollow charged conductor has a tiny hole cut into its surface. Show that the electric field in the hole is $(\sigma/2\epsilon0)$ $^{\mathbf{n}}$, where $^{\mathbf{n}}$ is the unit vector in the outward normal direction, and σ is the surface charge density near the hole.
- **27.** Obtain the formula for the electric field due to a long thin wire of uniform linear charge density λ without using Gauss's law.
- **28.** Consider an arbitrary electrostatic field configuration. A small test charge is placed at a null point (i.e., where **E** = 0) of the configuration. Show that the equilibrium of the test charge is necessarily unstable.
- **29.** A particle of mass m and charge (-q) enters the region between the two charged plates initially moving along x-axis with speed v_x . The length of plate is L and an uniform electric field E is maintained between the plates. Show that the vertical deflection of the particle at the far edge of the plate is $qEL^2/(2m vx^2).$

30. Art integration project in Physics

TOPIC-:

To study of A.C. Generator in context of produce electrical energy from mechanical energy